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Abstract

In this study, we propose the leveraging of interpretabil-

ity for tasks beyond purely the purpose of explainability.

In particular, this study puts forward a novel strategy for

leveraging gradient-based interpretability in the realm of

adversarial examples, where we use insights gained to aid

adversarial learning. More specifically, we introduce the

concept of spatially constrained one-pixel adversarial per-

turbations, where we guide the learning of such adversarial

perturbations towards more susceptible areas identified via

gradient-based interpretability. Experimental results us-

ing different benchmark datasets show that such a spatially

constrained one-pixel adversarial perturbation strategy can

noticeably improve the speed of convergence as well as pro-

duce successful attacks that were also visually difficult to

perceive, thus illustrating an effective use of interpretability

methods for tasks outside of the purpose of purely explain-

ability.

1. Introduction

In recent times, gradient-based interpretability has

grown into a significant area of research in the field of ex-

plainable artificial intelligence (XAI). Gradient-based inter-

pretability is generally leveraged to understand data sensi-

tivity [6, 7, 10], where the most sensitive areas responsible

for a particular prediction made are identified. In particular,

much of previous literature in XAI centers around leverag-

ing gradient-based interpretability for highlighting the re-

gions of interest for any given input to explain the decision

making process of deep neural networks.

More recently, there has been some attention in explor-

ing the use of gradient-based interpretability for purposes

other than purely explainability. For example, Zhou et.

al. [10] proposed the use of gradient-based interpretability
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to improve the localization performance of deep neural net-

works. A number of research studies [3, 5] have leveraged

sensitivity maps produced via gradient-based interpretabil-

ity as initialization for the task of segmentation. However,

leveraging gradient-based interpretability for tasks beyond

explainability is still not well explored outside of these

few examples, making further investigations into alterna-

tive directions for leveraging insights gained through inter-

pretability ripe for exploration.

In this study, we investigate and put forward a novel

strategy for leveraging gradient-based interpretability in the

realm of adversarial examples, where the goal is to produce

delicately perturbed inputs designed to mislead machine

learning models towards incorrect predictions. More specif-

ically, we introduce the concept of spatially constrained

one-pixel adversarial perturbations, guided by gradient-

based interpretability such that insights gained via inter-

pretability is used to aid adversarial learning. One-pixel

adversarial perturbations [9] is an extreme case of adver-

sarial examples where only one pixel is modified to fool

a model into providing the wrong prediction. This pixel

is found through Differential Evolution[1], where a popu-

lation of candidate pixels is randomly modified to create

children that compete with its parents for fitness in the next

iteration; this fitness criterion being the probabilistic pre-

dicted label. The optimal pixels for one-pixel adversarial

perturbations usually lie in positions of interest. This obser-

vation motivates us to leverage gradient-based interpretabil-

ity to constrain the differential evolution initialization; we

posit that, by ensuring that the initial population of pixels

lie in positions of interest as given by generated sensitivity

maps, the optimization algorithm for generating one-pixel

adversarial perturbations can converge faster with fewer it-

erations. Furthermore, by guiding it towards areas of inter-

est, the produced attacks may also be more visually difficult

to perceive.

The paper is organized as follows. Section 2 presents

the proposed strategy for leveraging gradient-based inter-

pretability in the realm of adversarial examples. Section 3
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presents and discusses the experimental results for studying

the efficacy of the proposed strategy on several benchmark

datasets (CIFAR-10 and NIPS-W). Finally, conclusions are

drawn in Section 4.

2. Methodology

In this section, we will provide a detailed description of

the proposed strategy for leveraging gradient-based inter-

pretability in the realm of adversarial examples, which is

designed to improve the speed of convergence for produc-

ing adversarial perturbations by using insights gained to aid

adversarial learning.

2.1. Spatially constrained one-pixel adversarial per-
turbations

In one-pixel adversarial perturbations, the optimal pixel

is found by using Differential Evolution (DE). For every

individual adversarial perturbation, a set of N vectors in

R
5 - where each vector p represents a candidate pixel’s xy-

coordinates and RGB values - is randomly generated, giv-

ing the initial parent population. This initialization serves as

input to the differential evolution optimization. For each it-

eration during optimization, N children are generated from

the parent population, and the fittest pixels i.e., the ones

providing the lowest probabilistic label for the correct class

remain to become N parents in the next iteration.

We hypothesize that the probability of susceptibility is

highest in areas that are identified as highly sensitive via

gradient-based interpretability. Therefore, we posit that

using sensitivity maps generated via gradient-based inter-

pretability as a spatial constraint when generating the initial

parent population should speed up DE convergence.

Fig. 1 shows an overview of the pipeline for the genera-

tion of spatially constrained one-pixel adversarial perturba-

tions on an image.

2.2. Susceptibility set generation

The first step involves the identification of a set of sus-

ceptible pixels S based on insights gained via gradient-

based interpretability. More specifically, we leverage

SmoothGrad [8] to obtain a sensitivity map s for each im-

age x, with each pixel in s providing a quantitative indica-

tor of importance of the underlying content to the decision

making process. To identify the set of susceptible pixels S,

binary thresholding is performed on the sensitivity map s as

follows:

s(x) =
1

n

n∑

1

ŝ(x+N (0, σ2)); S = {s(x) > τ} (1)

This is based on the assumption that the pixels with

higher sensitivity in the generated sensitivity maps are more

susceptible to attack.

(a) Susceptibility set generation.

(b) One-pixel adversarial perturbation generation.

Figure 1: Pipeline for the generation of spatially con-

strained one-pixel adversarial perturbations. (a) The set of

susceptible pixels is identified via sensitivity thresholding

on a sensitivity map obtained using SmoothGrad. (b) The

pixel perturbation, identified based on spatial constraint via

the set of susceptible pixels, is performed to the image to

obtain the adversarial example. The coordinate of the ad-

versarially perturbed pixel is showed on top of the output

image.

2.3. Adversarial perturbation generation

The second step involves leveraging the set of suscep-

tible pixels for guiding the adversarial learning process.

More specifically, when initializing the population for DE,

the X and Y values in each vector p for given image x

are constrained to be selected from within the set of S i.e.,

X,Y ∈ S to ensure that the initial population of pixels all

lie in the susceptible regions of the image.

p(x) = {X,Y, r, g, b}; (X,Y ) ∈ S

max
p(x)

fadv(x+ p(x)) ∨ ||p(x)||0 ≤ 1 (2)

3. Experiments and Results

To evaluate the efficacy of spatially constrained one-

pixel adversarial perturbations in reducing the convergence

time of DE, we conducted different experiments on the DE

algorithm (both in duration as well as average number of

iterations) at finding a susceptible pixel with and without

constrained initialization. Experiments were done for two

different datasets: i) CIFAR-10 [4], and ii) NIPS 2017 ad-

versarial attacks and defences challenge dataset [2] (small

subset derived from ImageNet), referred to as NIPS-W in
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Figure 2: Example images from ImageNet (left) and the

corresponding spatially constrained one-pixel adversarial

perturbed image (right) that led to successful attacks. The

coordinates of the perturbed pixels are shown on the right-

hand side.

the rest of the paper. The network tested in this study was

SqueezeNet.

We select the default set of 100 images taken from the

CIFAR-10 dataset in [9]. Additionally, for conducting a

larger set of experiments, we randomly select 500 images

from NIPS-W. For all experiments, we set the threshold τ

at 0.5. For each dataset, five different runs of the adversarial

attack were performed with different random seeds.

Table 1: Results of constrained one-pixel adversarial per-

turbations on 100 images from CIFAR-10 dataset. For both

constrained and unconstrained perturbations, the total time

in seconds, average time in seconds, and the average num-

ber of DE iterations are presented. Five runs for constrained

and unconstrained one-pixel adversarial perturbations show

that constrained perturbations converge faster.

Unconstrained Constrained (ours)

T (s) AVG T (s) AVG # itr T (s) AVG T (s) AVG # itr

207.98 2.08 35.61 37.15 0.56 2.52

216.00 2.16 37.40 35.36 0.54 2.33

212.10 2.12 36.72 34.16 0.52 2.26

210.71 2.11 36.39 37.03 0.58 2.52

210.72 2.11 36.24 36.05 0.55 2.40

The results for the CIFAR-10 and NIPS-W datasets are

summarized in Table 1 and Table 2 respectively. It can

be clearly observed that across different runs and on av-

erage, the constrained one-pixel adversarial perturbations

converged faster with comparatively less number of itera-

tions when compared to conventional one-pixel adversarial

perturbations. This effect is more pronounced for CIFAR-

10, with the spatially constrained one-pixel adversarial per-

turbations converging 6× faster than conventional attacks.

Therefore, it can be clearly observed that by guiding the

adversarial learning process for one-pixel adversarial per-

turbations towards areas of strong susceptibility based on

insights gained by gradient-based interpretability, one can

accelerate the optimization process to converge in a much

more rapid manner.

Example images from ImageNet that were successfully

attacked and their corresponding spatially constrained one-

pixel adversarial perturbed images are shown in Fig. 2.

It can be observed that the perturbed images, which re-

sulted in successful attacks given that the tested network

(SqueezeNet in this study) provided incorrect predictions

compared to the original images, look very perceptually

similar to the original images with the perturbed pixel vi-

sually hidden in most cases. The visual imperceptibility

gained when leveraging the proposed spatially constrained

one-pixel adversarial perturbation strategy stems from the

fact that the adversarial learning process was guided to-

wards sensitivity areas in the images that have complex de-

tails that conceal the perturbation well.

4. Conclusion

In this work, we presented a novel strategy in the realm

of adversarial examples that leverage gradient-based in-

terpretability, thus illustrate the use of such methods be-

yond purely the purpose of explainability. In particular,

we introduce a spatially constrained one-pixel adversar-

ial perturbation strategy that leverages identified sensitiv-
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Table 2: Results of constrained one-pixel adversarial per-

turbations on the NIPS-W dataset. For both constrained and

unconstrained successful attacks, the total time in seconds,

average time in seconds, and average number of DE itera-

tions are presented. Five runs for constrained and uncon-

strained one-pixel adversarial perturbations show that con-

strained perturbations converge faster.

Constrained (ours) Unconstrained

T (s) AVG T (s) AVG # itr T (s) AVG T (s) AVG # itr

355.69 6.03 6.44 445.55 8.25 8.80

392.21 6.88 7.63 523.31 8.58 9.70

446.09 7.31 8.13 516.71 8.62 9.52

344.90 5.95 6.45 459.81 7.79 8.75

416.18 7.19 7.86 559.48 9.32 10.60

ity within an image based on gradient-based interpretabil-

ity, thus leveraging insights gained to aid adversarial learn-

ing. Detailed experiments and evaluations were done to

show that leveraging gradient-based interpretability can be

used for faster convergence of one-pixel adversarial pertur-

bations. We hope this work will allow for further develop-

ment of gradient-based interpretability methods to be used

for many more tasks and use cases beyond purely explain-

ability.
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